Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton
نویسندگان
چکیده
The Linked Open Data (LOD) is a major milestone towards realizing the Semantic Web vision, and can enable applications such as robust Question Answering (QA) systems that can answer queries requiring multiple, disparate information sources. However, realizing these applications requires relationships at both the schema and instance level, but currently the LOD only provides relationships for the latter. To address this limitation, we present a solution for automatically finding schema-level links between two LOD ontologies – in the sense of ontology alignment. Our solution, called BLOOMS+, extends our previous solution (i.e. BLOOMS) in two significant ways. BLOOMS+ 1) uses a more sophisticated metric to determine which classes between two ontologies to align, and 2) considers contextual information to further support (or reject) an alignment. We present a comprehensive evaluation of our solution using schema-level mappings from LOD ontologies to Proton (an upper level ontology) – created manually by human experts for a real world application called FactForge. We show that our solution performed well on this task. We also show that our solution significantly outperformed existing ontology alignment solutions (including our previously published work on BLOOMS) on this same task.
منابع مشابه
Mapping the central LOD ontologies to PROTON upper-level ontology
Linking Open Data (LOD) facilitates the emergence of a web of linked data by publishing and interlinking open data on the web in RDF. One can explore linked data across servers by following the links in the graph. The LOD cloud has 203 datasets and more than 14 billion RDF triples (http://lodcloud.net). This paper describes an approach to access these data by means of a single ontology, matched...
متن کاملAlignment-Based Querying of Linked Open Data
The Linked Open Data (LOD) cloud is rapidly becoming the largest interconnected source of structured data on diverse domains. The potential of the LOD cloud is enormous, ranging from solving challenging AI issues such as open domain question answering to automated knowledge discovery. However, due to an inherent distributed nature of LOD and a growing number of ontologies and vocabularies used ...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کاملVariations on aligning linked open data ontologies
Traditional OA systems are not as suitable for aligning LOD ontology schemas; for example, equivalence relations are limited among LOD concepts so that OA systems for LOD ontology alignment also find subclass and superclass relations. Four recent approaches for LOD ontology alignment are BLOOMS (BL) [1] and BLOOMS+ [2], AgreementMaker (AM) [3], WikiMatch (WM) [4], and Holistic Concept Mapping (...
متن کاملOntology Alignment for Linked Open Data
The Web of Data currently coming into existence through the Linked Open Data (LOD) effort is a major milestone in realizing the Semantic Web vision. However, the development of applications based on LOD faces difficulties due to the fact that the different LOD datasets are rather loosely connected pieces of information. In particular, links between LOD datasets are almost exclusively on the lev...
متن کامل